我们将拓扑分析的方法应用于注意力图,该方法是根据BERT模型的注意力头(ARXIV:1810.04805V2)计算的。我们的研究表明,基于训练有素的神经网络的基本持久拓扑特征(即Betti数字)构建的分类器可以与常规分类方法达到分类结果。我们在三个文本分类基准上展示了此类拓扑文本表示形式的相关性。据我们所知,这是分析基于注意力的神经网络拓扑的首次尝试,该网络广泛用于自然语言处理。
translated by 谷歌翻译
A prominent approach to solving combinatorial optimization problems on parallel hardware is Ising machines, i.e., hardware implementations of networks of interacting binary spin variables. Most Ising machines leverage second-order interactions although important classes of optimization problems, such as satisfiability problems, map more seamlessly to Ising networks with higher-order interactions. Here, we demonstrate that higher-order Ising machines can solve satisfiability problems more resource-efficiently in terms of the number of spin variables and their connections when compared to traditional second-order Ising machines. Further, our results show on a benchmark dataset of Boolean \textit{k}-satisfiability problems that higher-order Ising machines implemented with coupled oscillators rapidly find solutions that are better than second-order Ising machines, thus, improving the current state-of-the-art for Ising machines.
translated by 谷歌翻译
大脑中的早期感觉系统迅速适应波动的输入统计,这需要神经元之间的反复通信。从机械上讲,这种复发的通信通常是间接的,并由局部中间神经元介导。在这项工作中,我们探讨了与直接复发连接相比,通过中间神经元进行反复通信的计算益处。为此,我们考虑了两个在统计上使其输入的数学上可行的复发性神经网络 - 一种具有直接复发连接,另一个带有介导经常性通信的中间神经元。通过分析相应的连续突触动力学并在数值上模拟网络,我们表明,具有中间神经元的网络比具有直接复发连接的网络更适合初始化,这是因为与Interneurons网络中的突触动态的收敛时间(RESS)(RESS)( 。直接复发连接)与它们初始化的频谱以对数(线性分析)进行对数缩放。我们的结果表明,中间神经元在计算上对于快速适应更改输入统计的有用。有趣的是,具有中间神经元的网络是通过直接复发连接网络的美白目标的过度参数化解决方案,因此我们的结果可以看作是在过度参数化的前馈线性线性网络中观察到的隐式加速现象的复发性神经网络模拟。
translated by 谷歌翻译
当不可用的数据不可用时,在电子商务行业中通常使用强盗算法来培训机器学习(ML)系统。但是,行业的设置提出了各种挑战,使实践中实施强盗算法的挑战是非平凡的。在本文中,我们详细阐述了非政策优化,延迟奖励,概念漂移,奖励设计和业务规则限制的挑战。我们的主要贡献是对开放匪徒(OBP)框架的扩展。我们为一些上述挑战提供模拟组件,以使未来的从业者,研究人员和教育工作者提供资源,以应对电子商务行业遇到的挑战。
translated by 谷歌翻译
量子哈密顿学习和量子吉布斯采样的双重任务与物理和化学中的许多重要问题有关。在低温方案中,这些任务的算法通常会遭受施状能力,例如因样本或时间复杂性差而遭受。为了解决此类韧性,我们将量子自然梯度下降的概括引入了参数化的混合状态,并提供了稳健的一阶近似算法,即量子 - 固定镜下降。我们使用信息几何学和量子计量学的工具证明了双重任务的数据样本效率,因此首次将经典Fisher效率的开创性结果推广到变异量子算法。我们的方法扩展了以前样品有效的技术,以允许模型选择的灵活性,包括基于量子汉密尔顿的量子模型,包括基于量子的模型,这些模型可能会规避棘手的时间复杂性。我们的一阶算法是使用经典镜下降二元性的新型量子概括得出的。两种结果都需要特殊的度量选择,即Bogoliubov-Kubo-Mori度量。为了从数值上测试我们提出的算法,我们将它们的性能与现有基准进行了关于横向场ISING模型的量子Gibbs采样任务的现有基准。最后,我们提出了一种初始化策略,利用几何局部性来建模状态的序列(例如量子 - 故事过程)的序列。我们从经验上证明了它在实际和想象的时间演化的经验上,同时定义了更广泛的潜在应用。
translated by 谷歌翻译
超高势计算(HDC),也称为矢量符号架构(VSA),是一种有前途的认知架构和人工智能系统的开发框架,以及技术应用和新兴的神经形态和纳米级硬件。 HDC / VSA使用大型固定尺寸(通常> 1000)的多维进窗,即分布式矢量表示。 HDC / VSA的关键成分之一是用于将各种类型的数据(从数字标量和载体从图形到图形)编码到超虚角的方法。在本文中,我们提出了一种方法,用于形成序列的超虚拟化,该序列提供了相对于序列的偏移的增夫,并保留了附近位置处具有相同元素的序列的相似性。我们的方法通过组成超虚拟矢量代表序列元素,并利用超虚角的置换来表示序列元素的顺序。我们通过以符号字符串形式的数据,通过各种各样的任务进行了实验探索了所提出的陈述。虽然我们的方法是无功能的,但它形成了从其符号的符号的超广告序列的序列的超级插座,但它展示了与应用各种功能的方法(例如子序列)的方法的表现。所提出的技术是设计用于称为稀疏二进制分布式表示的HDC / VSA模型。然而,它们可以适用于其他HDC / VSA模型的格式的超视频,以及表示除符号字符串之外的类型的序列。
translated by 谷歌翻译
在Connectomics领域,主要问题是3D神经元分段。虽然基于深度学习的方法取得了显着的准确性,但仍然存在错误,特别是在具有图像缺陷的区域中。一种常见类型的缺陷是连续缺失的图像部分。这里的数据沿一些轴丢失,所得到的神经元分割在间隙上分开。为了解决这个问题,我们提出了一种基于神经元点云表示的新方法。我们将其作为分类问题和训练素材,是最先进的点云分类模型,以确定应该合并哪种神经元。我们表明我们的方法不仅强烈表现,而且可以合理地缩放到超出其他方法试图解决的问题。此外,我们的点云表示在数据方面是高效的,维持高性能,数据对于其他方法是不可行的。我们认为这是对其他校对任务使用点云表示的可行性的指标。
translated by 谷歌翻译
大脑毫不费力地解决了盲源分离(BSS)问题,但它使用的算法仍然难以捉摸。在信号处理中,线性BSS问题通常通过独立分量分析(ICA)来解决。为了用作生物电路的模型,ICA神经网络(NN)必须至少满足以下要求:1。算法必须在在线设置中运行,其中一次一次流流,NN计算数据示例源无效,无需存储内存中的任何大部分数据。 2.突触权重更新是局部的,即,它仅取决于突触附近存在的生物物理变量。在这里,我们为ICA提出了一种新颖的目标函数,我们从中获得了生物学似体的NN,包括神经结构和突触学习规则。有趣的是,我们的算法依赖于通过输出神经元的总活性调节突触可塑性。在大脑中,这可以通过神经调节剂,细胞外钙,局部场势或一氧化氮来实现。
translated by 谷歌翻译
电机控制中的一个主要问题是了解大脑计划的计划,并在面对延迟和嘈杂的刺激面前执行适当的运动。解决这种控制问题的突出框架是最佳反馈控制(OFC)。 OFC通过将嘈杂的感官刺激和使用卡尔曼滤波器或其扩展集成内部模型的预测来生成优化行为相关标准的控制操作。然而,缺乏Kalman滤波和控制的令人满意的神经模型,因为现有的提案具有以下限制:不考虑感官反馈的延迟,交替阶段的训练,以及需要了解噪声协方差矩阵,以及系统动态。此外,这些研究中的大多数考虑了卡尔曼滤波的隔离,而不是与控制联合。为了解决这些缺点,我们介绍了一种新的在线算法,它将自适应卡尔曼滤波与模型自由控制方法相结合(即,策略梯度算法)。我们在具有局部突触塑性规则的生物合理的神经网络中实现该算法。该网络执行系统识别和卡尔曼滤波,而无需多个阶段,具有不同的更新规则或噪声协方差的知识。在内部模型的帮助下,它可以使用延迟感官反馈执行状态估计。它在不需要任何信息知识的情况下了解控制政策,从而避免需要重量运输。通过这种方式,我们的OFC实施解决了在存在刺激延迟存在下生产适当的感官电动机控制所需的信用分配问题。
translated by 谷歌翻译
这是第两部分综合调查的第二部分,专门用于计算框架,最常见于名称超高规范计算和矢量符号架构(HDC / VSA)。这两个名称都指的是一系列使用高维分布式表示的计算模型,并依赖于其关键操作的代数属性来结合结构化符号表示和矢量分布式表示的优点。全息减少的表示是一种有影响力的HDC / VSA模型,在机器学习域中是众所周知的,通常用于指整个家庭。但是,为了一致性,我们使用HDC / VSA来参考该区域。该调查的第I部分涵盖了该地区的基本方面,例如历史背景,导致HDC / VSA的开发,任何HDC / VSA模型的关键要素,已知的HDC / VSA模型,以及将各种类型的输入数据转换为高 - 适用于HDC / VSA的尺寸载体。第二部分调查现有的应用程序,HDC / VSA在认知计算和架构中的作用,以及未来工作的方向。大多数应用程序位于机器学习/人工智能域内,但我们还涵盖其他应用程序来提供彻底的照片。该调查是对新人和从业者有用的。
translated by 谷歌翻译